1. The new diguaianolide anabsin has been isolated from *Artemisia absinthium*, and its structure has been established on the basis of chemical transformations and an analysis of ¹H and ¹³C NMR spectra.

2. The structures of absinthin and of anabsinthin have been reconsidered.

LITERATURE CITED

- I. S. Akhmedov, Sh. Z. Kasymov, and G. P. Sidyakin, Khim. Prir. Soedin., 57 (1969).
 S. Kh. Zakirov, Sh. Z. Kasymov, and G. P. Sidyakin, Khim. Prir. Soedin., 548 (1976).
- 3. V. Herout, L. Novotny, and F. Sorm, Collect. Czech. Chem. Commun., 21, 1485 (1956).
- 4. L. Novotny, V. Herout, and F. Sorm, Collect. Czech. Chem. Commun., 25, 1492, 1500
- (1960).
 5. K. Vokac, Z. Samek, V. Herout, and F. Sorm, Tetrahedron Lett., <u>35</u>, 3855 (1968).
- K. Vokac, Z. Samek, V. Herout, and F. Sorm, Collect. Czech. Chem. Commun., <u>37</u>, 1346 (1972).
- 7. Sh. Z. Kasymov, N. D. Abdullaev, G. P. Sidyakin, and M. R. Yagudaev, Abstracts of Lectures at the Eleventh International Symposium on the Chemistry of Natural Compounds, Bulgaria [in Russian], Vol. 24 (1978), p. 421.

SYNTHESIS AND STUDY OF HYDRAZONES OF 17α -HYDROXYPROGESTERONE AND 17α -HYDROXYPREGNA-4,6-DIENE-3,20-DIONE AND THEIR 17α -ACYLATED DERIVATIVES

L. N. Volovel'skii, I. B. Skachek, A. G. Selichenko, and I. I. Kuz'menko បា

UDC 547.677-577.17

It has been shown that under mild conditions the reactions of 17α -hydroxy 3,20diones of the pregname series with acid hydrazides lead to the formation of 3monohydrazones, while under severe conditions 3,20-dihydrazones are formed regardless of whether a C₄-C₅ ethylenic bond or a chain of conjugation of C₄-C₅ and C₆-C₇ ethylenic bonds is present in the steroid molecule. The reaction of 17α acetoxy 3,20-diketones of the pregname series with acid hydrazides takes place only with the formation of 3-monohydrazones. An investigation of the gestagenic action of some of the compounds synthesized has shown that the presence of a 3keto group in the steroids of the pregname series is not necessary for the retention of this effect. The replacement of the keto group at carbon atom 3 by an azomethine group does not abolish the gestagenic action.

According to the literature [1], a necessary condition for gestagenic action is the presence in the pregname molecule of a 3-keto group and a C_4-C_5 ethylenic bond conjugated with it. Until now, it has been considered [1] that various changes connected with the replacement or reduction of the carbonyl group at C_3 either deprive the compound of gestagenic activity or greatly weaken it. However, it has been shown for a number of androstane compounds [2-6] that the replacement of an oxygen by a nitrogen atom at C_3 in androstane hydroxy ketones leads to an enhancement of biological activity.

A study of the reaction of the keto groups in an androstane 3,17-diketone with acid hydrazides [7] has shown that if the steroids include saturated rings A and B or a C_4-C_5 ethylenic bond conjugated with the 3-keto group, the reaction takes place at both carbonyls with the formation of dihydrazones. In this case, monohydrazones cannot be obtained by any changes whatever in the ratio of the initial components [7]. The presence in ring A of the

Kharkov Scientific-Research Institute of Endocrinology and Hormone Chemistry. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 501-509, July-August, 1979. Original article submitted January 10, 1979.

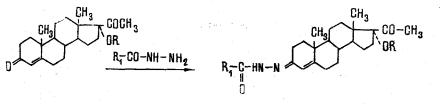
0009-3130/79/1504-0435\$07.50 © 1980 Plenum Publishing Corporation

435

S UMMARY

				-	Print of a 1			白	IR spectrum, cm ⁻¹	1, cm -1			
Compound	×	R	Yield, %	mp, °C	formula	vCO, amide I	δNH , amide Π	v C-N, amíde III	vc=0 at C_0	×C-0-C	v C = N	C	(CH ₂) _{<i>R</i>}
-	H		30	189-192	189–192 C ₂₇ H ₃₅ N ₃ O ₃ • 167.0	. 1673	1550	1230	0(11		1540	3040	· 1
H	c-cH ₃	: I.	10	150153	150—153 C ₂₄ H ₃₄ N ₂ O ₄	1690	1520	1270	1720	1210	1570	1 1 1	. 1
		8-(- -							
E	Ŧ	<u>)</u>	58	242-246	242- 246 CaoH41.04N3CI	1690	1550	1285	1710	1	1590	. 1	· 1 ·
	· · · · ·	-8-			· · ·								
N	0=0	\bigcirc	89	286-293	C ₂₉ H ₃₈ N ₃ O ₄	1690	1550	1300	1710	1230	1540	3300	ł
>	H	C ₆ H ₁₃	. 17,8		169-173 CasH41N2O3		1550	1280	1710	J	1540	ł	745
17	H	С°Нп	99	131-133	131-133 C3rH 2NgO3	1690	1540	1290	1710	1	1560	1	740

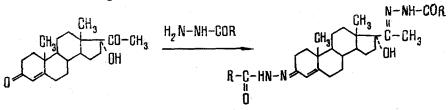
	,		•									
	(CH ₂) _{<i>n</i>}	···· [1		1		[740	l	1	1	760
		2990	. 1		1	a San San San San San San San San San San San San San San	1	1	1	3059	1	1
1 -1	n⊂=N	1590	1530		1590	· · · ·	1600	1560	1590	1570	1570	1600
R spectrum, cm ⁻¹	vco		1220		-		1230	1220	1230	1250	1720	1225
IR spe	vCO at C ₂₀	1700	1710	· · ·	1710		1710	1710	1710	1730	1710	1730
	v C-N, amide HI	1280	1280		1285		126)	1265	1270	130)	1250	1270
	δNH, amide Π	1530	1515		1550		1540	1535	1560	1520	1520	1535
	ν CO, amide I	1660	(691		1690	· · · · ·	169.)	1680	1690	1670	1670	1670
	Empirical formula	C ₂₇ H ₃₃ N ₃ O ₃	C ₂₄ H ₃₂ N ₂ O ₄		C ₃₁ H ₄₀ O ₃ N ₂ Cl		C ₃₁ H ₃₈ N ₂ O ₅ CI	C ₃₀ H4,O4N2	C ₂₄ H ₃₃ N ₂ O ₄	C29 ^{H38} N3O4	C ₂₅ H ₃₁ N ₂ O ₄	C29H42N2O4
	mp, °C	185188	190-192		244-246		207210	137140	228-230	280283	186188	126-128
	Yield,	8	60		11		51,72	88	45	57.7	78	20
	Å.	<u> </u>	н	ਬ –(<u>_</u>	C6 - CH		C ₆ H ₁	н	C.	CH ₃	C ₅ H ₁₁
	<u>م</u>		C-CH ₃	0	I		с- сН ₃	c−cH₃	C-CH ₃	c=C	c-cH ₃	
	punod	IIV	ЛИЛ		XI		×	x	шх	IIIX	XIV	XV


TABLE 2. Hydrazones of Derivatives of $1/\alpha$ -Hydroxy- Δ^6 -progesterone

437

steroid skeleton of two ethylenic bonds conjugated with the carbonyl group at C_3 leads to the formation of only the monohydrazone at C_{17} .

In the pregname derivatives that we are investigating, there are one or two double bonds in rings A and B conjugated with the carbonyl group at C_3 , and it was of interest to see what influence they exert on the reactivity of the 3-keto group. Furthermore, in the compounds under investigation the reactivity of the carbonyl at C_{20} is lowered because of the screening effect of the methyl groups at C_{13} and C_{20} and of the 17α -hydroxy or -acetoxy groups.


Our investigations have shown that on boiling in low-boiling aliphatic alcohols the reaction of the above-mentioned pregnane compounds took place with the formation of 3-monohydrazones in accordance with the scheme given below.

The reaction with 17α -hydroxypregna-4,6-diene-3,20-dione takes place similarly (Tables 1 and 2).

It follows from the results obtained that on heating in methanolic solution, acid hydrazides react only with the 3-keto group on progesterone derivatives. Thus, a C_4-C_5 ethylenic bond in ring A or a C_4-C_5 , C_6-C_7 chain of conjugated ethylenic bonds in rings A and B, unlike Δ^1 , 4-conjugation [8], has practically no influence on the reactivity of the 3-keto group.

Raising the temperature permits 17α -hydroxyprogesterone 3,20-dihydrazone to be obtained in accordance with the scheme given below.

The reaction takes place similarly with 17α -hydroxypregna-4,6-diene-3,20-dione (Tables 3 and 4).

If the 17α -hydroxy group is acylated, then, because of steric factors, the formation of hydrazones is possible only at carbon atom 3, regardless of the conditions of performing the reaction.

The compositions and structures of the hydrazones obtained were shown with the aid of elementary analysis and IR spectrometry. The absorption bands observed in the spectra agree with literature figures for analogous functional groups [10]. Consequently, the reactivity of the 3-keto groups, even though it is lowered as a consequence of the conjugation effect, is nevertheless higher than the reactivity of the C_{20} keto group.

In view of the identical stereoisomeric structural skeletons of the androstane hydroxy ketones and the pregname derivatives, it might be assumed that an increase in the density of the electron cloud at C_3 of the steroid molecule connected with the replacement of oxygen by nitrogen should lead, if not to an enhancement, at least to a retention of the biological properties of derivatives of the pregname series.

To evaluate the gestagenic properties of the compounds obtained we used the Clauberg test [11]. The experiments were performed on sexually immature female rabbits weighing 0.6-0.8 kg.

Results on the gestagenic activity of some of the hydrazones of the pregnane series that we synthesized are given in Table 5. On analyzing them, it is possible to arrive at the conclusion that the replacement of oxygen by nitrogen at C_3 of the pregnane molecules leads to a retention of the gestagenic activity of the compounds.

The specific action of the 17α -acetoxy- Δ^6 -progesterone 3-caproylhydrazone obtained exceeds that of progesterone.

TABLE 3.	17α-Hydr	coxyprog	esterone Di	TABLE 3. 17α -Hydroxyprogesterone Dihydrazones								
				-	•		R S	IR spectrum, cm ⁻¹	cm-1			
Compound	¥	Yield, %	mp, °C	Empirical formula	νCO_{\bullet} δ amide I a	бNH, amide п	δNH_{s} $\nu C-N_{s}$ amide II	µC=N	HNu	но	(CH ₂) _{<i>n</i>}	
XV	E E	09	233-235	C ₂₃ H ₃₄ O ₃ N ₄	1690	1515	1270	1540	32.00	3420	ļ	
XVI	C ₆ H ₁₁	20	165-167	C ₃₃ H ₅₄ O ₃ N,	1670	1520	1300	1520	3200	3420	740	
IIVX	C ₆ H ₁₃	71,4	140-143	Cas H ₅₈ O ₃ N ₄	1690	1550	1290	1560	3250	3420	160	
ХИШ	CH ₃	27	267 - 272	C23H36O3N4	1690	1540	1250	1360	3250	3400	1	
						_	- -	-	-	-		

.

TABLE 4	4. 17α-Hy	droxy-A	"-progest	TABLE 4. 17α -Hydroxy- Δ ^c -progesterone Dihydrazones	Irazones						
				Finnition			IR si	IR spectrum, cm ⁻¹	1-uis		
Com- pound	۲.	Yield, %	mp, °C	formula	vCO, amide I	δ NH, amide II	vC-N, amide III	vC=N	ΗΝΛ	(CH ₃) _n	Ю
XIX XXX XXX XXX	H CH3 C _{6H11} C _{6H11}	80 19,5 60,1 48,5	238–240 340–343 157 - 159 124–127	C 23 H 32 O 3 N 4 C 23 H 32 O 3 N 4 C 23 H 36 O 3 N 4 C 23 H 56 O 3 N 4 C 23 H 56 O 3 N 4 C 23 H 56 O 3 N 4	1670 1670 1670	1530 1510 1510 1510	1270 1285 129) 1280	1555 1530 1530 1530 1530	3250 3250 3200 3200	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	347) 3420 3420 3420
ШХХ	\bigcirc	53	180	C ₃₈ H ₄₀ O ₃ N ₄	1665	1520	1275	1580	3250	1	3420
XXIV		40	222224	C ₃₃ H ₃₆ O ₃ N ₆	1660	1530	1270	1555	3260	1	3400

439

Substance tested	Dose, mg (equiva- lent to progester-	Index of test) the administ	progestag following ration of 1	enic pr numbe he subs	oliferation (rs of days af tance	Clauberg ter the
. ·	one)	3	7	10	14 days	
Progester- one	1.0 0,8 0,6 0,4	3,60 3,40 3,20 3,00	1,50 0 -	0		<u></u>
I VII	0,2 0,1 1,0 1,0	1,00 0,33 1,12 1,17				
XIII VI XY	1.0 1.0 1.0 0.8	0,66 0,50 3,50 2,37	 3,00 2.20	2.20 1,10	1,10	
	0.6 0.4 0,2 0,1	2,17 1,17 1,30 0,50	1,50 1,80 —			

TABLE 5. Gestagenic Activities of Some 17α -Hydroxyprogesterone Derivatives

EXPER IMENTAL

The results of the elementary analysis of the compounds described agreed with the calculated figures.

<u>17a-Hydroxypregn-4-ene-3,20-dione 3-Isonicotinoylhydrazone (I)</u>. A mixture of 0.5 g of 17a-hydroxypregesterone, 0.75 g of isonicotinic acid hydrazide, and 30 ml of methanol was boiled for 5 h. After cooling, the reaction mixture was poured into salted water and the precipitate was filtered off, washed with water, and dried. The resulting hydrazone was purified by crystallization from benzene, which yielded 10.3 g of 17a-hydroxypregn-4-ene-3,20-diene 3-isonicotinoylhydrazone (I) (30% of theoretical) with mp 189-192°C.

The following were obtained similarly: 17α -hydroxypregna-4,6-diene-3,20-dione 3-isonicotinoylhydrazone (VII), 17α -hydroxypregn-4-ene-3,20-dione 3-enanthoylhydrazone (V), 17α hydroxypregn-4-ene-3,20-dione 3-caproylhydrazone (VI), 17α -acetoxypregn-4-ene-3,20-dione 3formylhydrazone (II), and 17α -acetoxypregna-4,6-diene-3,20-dione 3-formylhydrazone (VIII).

 17α -Hydroxypregna-4,6-diene-3,20-dione 3-p-Chlorophenoxyacetylhydrazone (IX). A mixture of 0.2 g of 17α -hydroxypregna-4,6-diene-3,20-dione, 0.3 g of p-chlorophenoxyacetic acid hydrazide, and 5 ml of glycol was heated in Wood's metal bath at 200°C for 5 h. After cooling, the reacttion mixture was poured into salted water and the precipitate was filtered off and washed with water. The hydrazone synthesized was purified by crystallization from ether. This gave 0.25 g of 17α -hydroxypregna-4,6-diene-3,20-dione 3-p-chlorophenoxyacetylhydrazone (IX) (77% of theoretical) with mp 244-246°C.

The following were obtained similarly: 17α -hydroxypregn-4-ene-3,20-dione 3-p-chlorophenoxyacetylhydrazone (III); 17α -acetoxypregna-4,6-diene-3,20-dione 3-p-chlorophenoxyacetylhydrazone (X); 17α -acetoxypregna-4,6-diene-3,20 - dione 3-acetylhydrazone (XIV); 17α acetoxypregna-4,6-diene-3,20-dione 3-enanthoylhydrazone (XI); 17α -acetoxypregna-4,6-diene-3,20-dione 3-isonicotinoylhydrazone (XIII); 17α -acetoxypregn-4-ene-3,20-dione 3-isonicotinoylhydrazone (IV); 17α -acetoxypregna-4,6-diene,3-20-dione 3-formylhydrazone (XII); and 17α acetoxypregna-4,6-diene-3,20-dione 3-caproylhydrazone (XXV).

<u>17 α -Hydroxypregna-4,6-diene-3,20-dione Di(acetylhydrazone)</u> (XX). To 0.2 g of 17 α -hydroxypregna-4,6-diene-3,20-dione in 5 ml of ethylene glycol was added 0.2 g of acetic acid hydrazide. The reaction mixture was heated at 200-210°C for 5 h. After cooling, the mixture was poured into salted water, and the precipitate was filtered off and dried. The substance was purified by crystallization from benzene. This gave 0.05 g of 17 α -hydroxypregna-4,6-diene-3,20-dione di(acetylhydrazone) (XX) with mp 340-346°C (19.5% of theoretical).

The following were obtained similarly: 17α -hydroxypregna-4,6-diene-3,20-dione di(cap-roylhydrazone) (XXIII); 17α -hydroxypregn-4-ene-3,20-dione di(caproylhydrazone) (XVI); 17α -hydroxypregn-4-ene-3,20-dione di(enanthoylhydrazone) (XVII); 17α -hydroxypregna-4,6-diene-3, 20-dione di(isonicotinoylhydrazone) (XXIV); and 17α -hydroxypregn-4-ene-3,20-dione di(acetyl-hydrazone) (XVIII).

 17α -Hydroxypregn-4-ene-3,20-dione Di(formylhydrazone) (XV). A mixture of 0.2 g of 17α -hydroxypregn-4-ene-3,20-dione, 0.2 g of formic acid hydrazide, and 3 ml of methanol was boiled for 5 h. After cooling, the reaction mixture was poured into salted water, and the precipitate was filtered off and dried. The dihydrazone obtained was crystallized from ether. This gave 0.15 g of 17α -hydroxypregn-4-ene-3,20-dione di(formylhydrazone) (60% of theoretical) with mp 233-235°C.

 17α -Hydroxypregna-4,6-diene-3,20-dione di(formylhydrazone) was obtained similarly.

SUMMARY

1. It has been established that under mild conditions the reaction of 17α -hydroxy 3,20diones of the pregname series with acid hydrazides leads to the formation of 3-monohydrazones and under severe conditions 3,20-dihydrazones are formed regardless of whether a C₄-C₅ ethylene bond or a chain of conjugation of C₄-C₅ and C₆-C₇ ethylenic bonds is present in the steroid molecule.

2. It has been shown that the reaction of 17α -acetoxy 3,20-diketones of the pregnane series with acid hydrazides leads to the formation only of the 3-hydrazones.

3. A study of the gestagenic action of some of the compounds synthesized has shown that the presence in steroids of the pregname series of a 3-keto group is not essential for the retention of its effect. The replacement of the keto group on carbon atom 3 by an azomethine group is accompanied by retention of the gestagenic action.

LITERATURE CITED

- 1. L. Fieser and M. Fieser, Steroids, Reinhold, New York (1959).
- P. de Ruggieri, C. Landofi, and D. Chiaramonti, Bull. Soc. Ital. Biol. Sperim., <u>38</u>, 985 (1962).
- 3. R. J. Dorfman and F. A. Ringe, Endocrinology, <u>72</u>, 259 (1963).
- 4. G. Stevens, US Patent No. 3,169,979 of Feb. 16, 1965.
- 5. L. M. Makarevich-Gal'perin, S. N. Ushenko, and L. N. Volovel'skii, Proceedings of the Kharkov Scientific-Research Institute of Endocrinology and Hormone Chemistry [in Russian] (1965), p. 291.
- 6. L. M. Makarevich-Gal'perin and S. N. Ushenko, Pharmacology and Toxicology. Republican Interdepartmental Symposium [in Russian], No. 10 (1975), pp. 73-76.
- 7. L. N. Volovel'skii, Ukr. Khim. Zh., 23, 72 (1957).
- 8. L. N. Volovel'skii, Zh. Obshch. Khim., 37, 590 (1967).
- 9. T. Minory, J. Pharm. Soc. Jpn., 84, 900 (1964).
- L. Bellamy, Infrared Spectra of Complex Molecules, 2nd ed., Methuen, London/Wiley, New York (1958).
- 11. C. Clauberg, Klin. Wschr., 10, 1949 (1931).